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DYNAMICS OF EXPLOSIVE LOADING FOR A FINITE VOLUME 

OF A DENSE TWO-PHASE MIXTURE 

I. G. Getts and V. K. Kedrinskii UDC 532.528+539.375 

This work is devoted to the problem of breakdown of a finite volume of liquid with ex- 
plosive loading concentrated at its center. It is often assumed [I] that this type of process 
in liquids is identical to phenomena occurring in solid bodies from the point of view of 
their final effect, i.e., formation of spalled layers close to the free surface with reflec- 
tion from it of a strong shock wave (SW). By analogy the concept is introduced of critical 
tensile stresses which are accommodated by the material and which when exceeded lead to for- 
mation, for example, in the case of plane shock waves, of plane separation surfaces. In [2], 
on the basis of analyzing work for studying critical stresses, it was shown that experimental 
data often differing by an order of magnitude may be explained by the nature of loading if 
a liquid which always contains microinhomogeneities in the form of free gas microbubbles 
is considered as a two-phase material and an appropriate mathematical model is applied to 
it. However, as noted in [3], this approach is inadequate in order to describe the break- 
down process. It is also shown there that behind a propagating rarefaction wave front there 
is intense development of bubble cavitation. This type of volumetric cavitation boiling 
embraces a significant part of the liquid, the medium becomes optically opaque, and, as can 
be seen from calculations, it retains hardly any tensile stresses which relax in a time of 
the order of i ~sec. Nonetheless, cases are possible when within the volume of a cavitating 
liquid conditions are created leading to occurrence of spalling phenomena [3]. The explicit 
cavitation (frothy) structure of these layers only underlines the indeterminate nature of 
the mechanism of their formation. 

The main features of the breakdown process for a finite volume of liquid with a free 
surface under explosive loading may he described as follows. Reflection of a strong SW from 
a free surface leads to formation of an unloading wave behind the front of which intense 
development of bubble cavitation is observed at nuclei whose role is played by microinhomo- 
geneities: their density is of the order of 10s-106 cm "~ [4], i.e., the process of damage 
initiation typical for brittle fracture dynamics [5, 6] is absent in a liquid in view of 
the features of its original structure. Unlimited development of cavitation bubbles leads 
to formation in the "boiling" liquid of a foam structure [7]. The latter, during inertial 
expansion, is finally transformed into a gas-droplet structure. Naturally, in each specific 
case, the duration of this or another stage of the breakdown process may be different and 
it depends markedly on loading dynamics. Nonetheless, on the basis of already known experi- 
mental and numerical studies (e.g., [2, 5, 8]) it is possible to note these typical times 
for the process: of the order of a microsecond for relaxation of tensile stresses, tens 
of microseconds for development of a cavitation zone (cavitation cluster), hundreds of micro- 
seconds for formation of a foam structure, and of the order of milliseconds for its breakdown 
into liquid fragments. 
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Results are presented in this paper for numerical analysis of the final stage of the 
explosive breakdown process for a spherical layer of liquid starting from a certain inter- 
mediate instant. It is assumed that cavitation breakdown has physically occurred. The me- 
dium is a dense package of elastic spherical liquid droplets. It is assumed that during 
reaction droplets do not flow together. 

Statement of the Problem and a Mathematical Model. A spherical charge of explosive 
substance (ES) with density P0 and radius r I is surrounded by a shell with internal radius 
r2, which is a two-phase mixture of particles, i.e:, air with a volume fraction of dispersed 
phase of 74% equal to the concentration of densely packed spheres. Detonation of the ES 
charge is modeled by an instantaneous explosion with a constant volume with some average 
value for pressure in the detonation products having the same density P0. 

Spherically-symmetrical movement of this two-phase mixture may be described by means 
of equations for heterogeneous medium mechanics [9]: 

a 1 a 
a-T 01 § 7 ~ (r~P~uO = O, 

0 1 0 ,~ , 
a--T Ps ~- ~ - ~  (r'p~u2) = O, 

wJ'%ul ~ + v,i 77a ~r-plUl)/., ~., a a --at - -  + % -a-7 p2 + ~ % (Pl - -  P2) r z 

a 1 0 / 2 ~-\ O a--/- (Psus) f f  - -  -~- ~r psU.~) + % ~ P2 = ], r z 

0 (pses) -F - 7  ~ (r'p~esus) = ~.2 ~ ,o~ -F s Or ' 

1 0 r~ 0-~ (pIE1 + P~Es) + - 7  ~ (rSplulE1 + + 

l o 
+ 7 ~ - ( r  s (glu~pl + %u.,p.,)) = O, Pi=P~ai~ ( i = l ~ 2 ) ,  % + % = 1 ,  

] = 0.75 %o~C~ ] ul - -  us I(ul  - -  u~)/d, 

( i )  

C d = 

C1 = 24/R i + 4.4/Reo.5 q- 0.42, 
15o%~ 

+ 

1 (% - o.o8) G + (0.45 - %) c ,  
0,37 

p l  = = 
1) p ~ e l ,  

p, = - i). 

% ~ 0.08, 

% ~ 0.45, 

, 0 . 0 8 < % < 0 . 4 5 ,  

r > r  d , 

r < r d ,  

Here Pi, Pi ~ ~i, ui, Pi, El, and e i are average and true densities, volume c~ncentration, 
velocity, pressure, total and internal energy of the i-th phase (i = 1 is a gas; i = 2 is 
the dispersed phase); d is particle diameter; ~i is viscosity of air; u is adiabatic expon- 
ent for air; r d is boundary of the detonation products; Fd(Pz ~ e I) determines the state 
of the detonation products [i0]. Equations for calculating resistance factor C d were taken 
from [ii]. 

In order to close this system it is necessary to introduce a condition of combined de- 
formation of phases by means of which it would be possible to determine, for example, ~2. 
We make the following assumptions: 

i) if ~2 ~ 0.74, then particles have a spherical shape and their radius is determined 
from the condition for equality of pressures P2 = Pl with an unchanged particle mass; 

2) with ~2 > 0.74, particle deformation is considered so that: a) particles are packed 
at the tips of regular tetrahedra; b) outside the points of contact they have a spherical 
shape, and the radius is determined as in paragraoh 1 without considering deformation; c) the 
contact surface of two particles is flat. 
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By using these conditions it is possible to write an implicit equation ~2 = G(~2, Pl, 
el, P2, r), where 

IpJp2, p2!p2 <0 14, 
G (g.o, p,, e 1, p~, r) = (PJP2 ~ * (9 ( - - - ~ 2 )  / / 0.749* ~1/, --o~ 0.1)-o,'4p.~ 5)/ , 

02 = (F (97, el, r)/pr + ~)1/7,15 * * p-o/p-o > 0.74, Pt = 91/( t --  a-o). 

The second equation in determining G holds true with P=/P2* ~ 1.13, which was controlled 
in the course of numerical experiments. 

Numerical calculations were carried out by the method of coarse particles with uncon- 
solidation of the two-phase region boundary and the boundary betweendetenation products 
and air. In view of the considerable velocity imbalance for phases, in order to achieve 
stability for the calculation the right-hand part in pulse equations, depending on the square 
of the difference of phase velocities, it was approximated as follows: one factor was taken 
from the lower (with respect to time) layer of the difference network, and the other was 
taken from the upper layer. 

Hexogen was taken as a specific ES with a density of P0 = 1.65 g/cm 3 and a calorific 
value of 1.32 kcal/g. Thus, the initial conditions for the set of differential equations 
(i) takes form with r < r d = r I = 0.3 cm, ~2 = 0, Pl = 1.65 g/cm 3, u z = 0, e I = 5526 J/g; 
with r I < r < r 2 = 1.5 cm, ~2 = 0.74, p2 ~ = i g/cm 3, u 2 = 0, e 2 = 0, pl ~ = 0.001 g/cm 3, u I = 
0, ef = 250 J/g; with r 2 < r, ~2 = 0, Pl = 0.001 g/cm 3, u z = 0, e z = 250 J/g. Calculations 
were made for three sorts of particles (d = i, 6, and 60 pm). 

Results. Analysis of numerical studies showed that it is possible to separate three 
stages of process development. First, disintegration of the separation at the inner boundary 
of the two-phase region leads to occurrence of an SW in the gas phase and a rarefaction wave 
in detonation products. A compression region forms ahead of the SW in the dispersed phase 
with a volume concentration of more than 74% with a pressure exceeding the pressure of the 
gas phase, and a clearly defined drop in pressure at the leading front. Presented in Fig. 
i for instants of time 3, 6, and 9 psec (lines 1-3) are data for pressure distribution in 
the gas and dispersed (broken lines) phases. As a result of passage of this SW through par- 
ticles the dispersed phase acquires a greater velocity than the gas and, therefore, the boun- 
dary of the detonation products lags behind the inner edge of the two-phase cloud. After 
passage of the SW in particles at the outer boundary of the dispersed zone a departing SW 
forms in air, and in the two-phase region a rarefaction wave forms which together with the 
divergence caused by the spherical symmetry of flow leads to a rapid drop in the volume con- 
centration of particles below the level of dense packing; shown in Fig. 2 is the distribution 
of dispersed concentration through the thickness of the layer for two instants of time (t = 
0 and 20 Bsec, solid line). In our calculations the processes listed end toward 15 ~sec. 
In this stage, particle diameter (within the limits in question) affects very weakly pressure 
and mass velocity of both components. 

In the second stage the gas phase starts to transmit its kinetic energy to the dispersed 
phase [broken lines in Fig. 3 correspond to particle velocities, data are provided for parti- 
cles with d = 6 Dm and two instants of time: 20 and i00 ~sec (profiles i and 2)]. Since 
the force of resistance is inversely proportional to inclusion diameter, fine particles ac- 
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TABLE i 

d, ~m r~,cm re,am r~-r~ 

i 4,9 8,i 
6 6,3 i0,8 

60 47,0 56,0 
Starting parameters 

i ; 6 ; 6 o  I o,31 i,5 I 

3,2 
4,5 
9,0 

1,2 

quire considerable velocity and they outstrip coarser particles. The behavior of the detona- 
tion product boundary in this stage depends on particle diameter: for d = 1 and 6 pm it 
lags a little behind the inner edge of the heterogeneous zone, and for d = 60 pm it easily 
goes deeper into the two-phase layer. 

The second stage ceases toward 60-70 psec when pressure in the two-phase cloud becomes 
equal to atmospheric pressure. Depending on diameter, the particles start to slow down to 
a greater or lesser degree by entraining gas (Fig. 3). Dispersed clouds with a particle 
diameter of 1-6 pm move as weakly permeable pistons and, therefore, toward 400-500 ~sec when 
in the internal cavity pressure drops to 1.5"104 Pa for d = 6 pm (2"10 ~ Pa for d = 1 pm), 
the powerful reverse gas flow occurring stops particles and their movement commences toward 
the center of symmetry. Development of this process is reflected in Fig. 4, where the broken 
line is velocity of a dispersed phase with a particle diameter d = 1 pm for t = 300, 350, 
400, and 500 psec (a-d, respectively). Shown in Fig. 5 is pressure distribution in the gas 
phase with t = 400 psec. 

Thus, pressure in the internal cavity increases anew, particles stop, and they are en- 
trained by the gas flow with positive velocity. As a result of this damping oscillatory move- 
ment of the two-phase cloud occurs whose boundary dynamics are noted in Fig. 6. The ampli- 
tude and frequency of disperse zone oscillation with d = 1 ~n (lines 4 and 4') in view of 
its lower permeability is greater than with d = 6 pm (lines 3 and 3'). Asymptotic values 
of the internal edge radius for a two-phase cloud (curves it-4 ') and the outer edge are given 
in Table i. 

A different situation arises in the case of coarse particles with d = 60 pm. The resis- 
tance of this cloud appears to be quite small, so that although it also creates rarefaction 
in the inner cavity (Pl = 5"104 Pa) reverse gas flow does have a great effect upon its move- 

p ,  fO 5 Pa ~J~~~_., 
0 10 20 r~ cm 

Fig. 5 
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ment (curves I and i'). Starting from 500-Dsec displacement of the dispersed zone differs 
little (=2%) from the movement of individual particles of the same diameter in quiescent 
air (in Fig. 6 their trajectories are given by lines 2 and 2'). 

In addition, in this stage a marked increase is observed in the radial thickness of 
the two-phase layer. It is laid down on the first stage when as a result of passage of the 
SW through particles the outer boundary of the dispersed zone acquires a greater velocity. 
Subsequently, this effect is reinforced due to reverse gas flow, mainly retarding particles 
locatedat the inner edge of the dispersed phase. 

From the data in Table 1 and Fig. 6 it is possible to suggest that, with presence of 
particle distribution over the diameter within the limits in question, the transverse size 
of the two-phase zone increases approximately up to 50 ca with an initial value of 1.2 cm 
in the computed problem. 

The boundary of the detonation products in this stage definitely lags behind the two- 
phase layer. However, it should be noted that the dispersed phase hardly reacts with the 
hot detonation products (an exception is the case of d = 60 Dm, but here also the reaction 
lasts about 40 Dsec in a small volume). 

Figure 7 represents the dynamics of dispersed phase concentration behavior at a distance 
of 8 ca from the center of the charge for d = i, 6, and 60 ~a (a-c, respectively). It can 
be seen that at instants of time close to 0.2 asec at a given point there are all types of 
particles, actually with a marked difference in values of ~2. In the time range from 0.6 
to 0.8 msec, due to reverse movement at first particles appear with d = 1 ~m, and then with 
d = 6 Da. After 0.8 msec a dispersed phase only with a particle size of 6 ~a stabilizes 
at this point. 

It is evident that consideration of heat and mass transfer and the effect of droplet 
breakage in a stream, even in the case of the original aonodispersed structure of a dense 
two-phase layer, leads to occurrence of polydispersivity and those features which have been 
noted above. 

LITERATURE CITED 

i. B.V. Zamyshlyaev and Yu. S. Yakovlev, Dynamic Loading with an Underwater Explosion [in 
Russian], Sudostroenie, Leningrad (1967). 

2. V. K. Kedrinskii, "Dynamics of the cavitation zone with an underwater explosion close 
to a free surface," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1975). 

3. V. K. Kedrinskii, "Surface effects with underwater explosions (review)," Zh. Prikl. 
Mekh. Tekh. Fiz., No. 4 (1978). 

4. V. K. Kedrinskii, V. V. Kovalev, and S. I. Plaksin, "A model of double cavitation in 
a real liquid," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1986). 

5. L. D. Volovets, N. A. Zlatin, G. S. Pugachev, et al., "Possibility of experimental study 
of failure kinetics for polymethylmethacrylate with intense loads of microsecond dura- 
tion," Lett. Zh. Tekh. Fiz., i, No. 8 (1978). 

284 



6. N. A. Zlatin, G. S. Pugachev, and V. A. Stepanov, "Failure stresses with a brief impact, ~ 
Zh. Tekh. Fiz., 49 (1979). 

7. I. R. Baikov, A. R. Berngardt, V. K. Kedrinskii, and E. I. Pal'chikov, "Experimental 
methods for studying,he dynamics of cavitation clusters," Zh. Prikl. Mekh. Tekh. Fiz.~ 
No. 5 (1984). 

8. N. N. Chernobaev, "Features of pulsed failure for liquids with different physical prop- 
erties," in: Solid Material Dynamics, No. 84 [in Russian], Inst. Gidrodin. Sib. Otd. 
Akad. Nauk SSSR, Novosibirsk (1988). 

9. R. I. Nigmatulin, Bases of Heterogeneous Material Mechanics [in Russian], Nauka, Moscow 
(1978). 

i0. V. F. Kuropatenko, "Equation of state for the detonation products of condensed explo- 
sives," Chislennye Metody Mekh. Sploshnoi Sredy, 8, No. 6 (1977). 

ii. I. Sh. Akhatov and P. B. Vainshtein, "Nonsteady-state combustion regimes for porous pow- 
ders," Fiz. Goreniya Vzryva, No. 3 (1983). 

12. Ao I. Ivandaev and A. G. Kutushev, "Numerical study of nonsteady-state wave flows for 
a gas suspension with separation of two-phase regions and contact separations in the 
supporting gas," Chislennye Metody Mekh. Sploshnoi Sredy, I_~4, No. 6 (1983). 

MECHANISM OF PULSED BREAKDOWN OF A LIQUID VOLUME 

S. V. Stebnovskii UDC 532.528 

From numerous experiments it is well known [i~ 2] that with pulsed loading for liquid 
volumes of finite dimensions there is partial or complete breakdown of the liquid medium 
followed by formation of a spray stream. Until recently, the physical mechanism of this 
breakdown process had not been studied. In [3] the energy threshold was determined for pulsed 
breakdown of a water volume with shock-wave loading. In [4] it was demonstrated that if 
the loading time t, is much greater than the time for unloading wave propagation through 
the liquid to, then breakdown is due to development of perturbations in the mobile boundaries 
of a liquid volume, and if t, & t o , then the breakdown stage is preceded by unlimited de- 
velopment of cavitation flow in the medium. In the latter case, the question remains open 
of the breakdown mechanism since it is not clear how, in the process of cavitation develop- 
ment, there is formation of discontinuities in a bubble medium and decomposition of it into 
individual fractions. Below this type of liquid breakage will be called cavitation break- 
down. 

i. In the present work, a phenomenological approach is suggested toward constructing 
a physical model of cavitation breakdown of a liquid medium taking account of the analysis 
of experimental results for axisymmetrical shock-wave loading of a cylindrical water volume. 

Experiments were carried out in water specimens 1 (Fig. I) with initial dimensions 
R 0 = 2 cm, H 0 = 3 cm. In the original condition the outer surface of the liquid was boun- 
ded by a thin paper shell 2 and with the ends rigidly clamped by plane-parallel plates of 
organic glass 3. A shock wave was generated as a result of an electrical explosion located 
along the axis of symmetry of the liquid volume by a manganin wire 4 in which a bank of high- 
voltage condensers with a capacitance of 1 ~F was discharged. The explosive energy somewhat 
exceeded the threshold value [3]. The loading time (duration of shock-wave emission in the 
liquid, depending on the electrical discharge circuit parameters) is close to t o = R0/c 0 
(c o is sound velocity in water). According to [4] the process occurs in the following se- 
quence: generation of a diverging cylindrical shock wave due to the electrical explosion 
of the wire; reflection of the wave from the free surface r = R 0 (Fig. i); development be- 
hind the unloading wave front of cavitation flow with an unlimited increase in the volume 
concentration of bubbles; breakdown of the radially expanding cavitating volume into indi- 
vidual fractions. Optical recording of the process was carried out by means of a high-speed 
photorecorder SFR-I (the field of exposure in Fig. 1 is marked with a broken circle). 
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